logo
Enviar mensaje
Shenzhen Olax Technology CO.,Ltd
productos
Noticias
En casa >

CHINA Shenzhen Olax Technology CO.,Ltd Noticias de la empresa

Key Takeaways from 5G Radio Working Group (RAN2) R17

  RAN2's 5G work focuses on consolidating and enhancing the concepts and functions introduced in R16, while adding new system features; improving vertical industry applications including positioning and dedicated networks; advancing short-range (direct) communication between terminal devices in the field of autonomous driving (V2X) for Internet of Things (IoT) support; improving support for multiple media (codecs, streaming media, broadcast) related to the entertainment industry; and improving support for mission-critical communications. Furthermore, it improves several network functions (such as network slicing, flow control, and edge computing). The specific key points regarding the radio interface architecture and protocols (such as MAC, RLC, PDCP, SDAP), radio resource control protocol specifications, and radio resource management processes under the responsibility of 3GPP RAN2 are as follows:   I. Key Features of RAN2 Rel-17: Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions). RedCap Protocol Support (Lightweight RRC Status, Energy Saving, Feature Set Reduction). QoE/slice control enhancements and mobility handling (slice improvements and ATSSS interaction). Location enhancement procedures (new measurement methods and reference signal usage). II. Rel-17 Implementation Impact and Details   2.1 Sidelink Enhancements (Relay, Multicast, V2X Functionality Extensions) RRC message and MAC/PHY multiplexing changes; new Sidelink relay (L2/L3) multicast and group management procedures. In application: Extended sidelink control channel processing and HARQ management for relay nodes, RC upgrade to support Sidelink configuration lists, group identifiers, and security context distribution. Resource allocation enhancements support scheduling and autonomous resource selection and add an RRC TLV field for authorization timing and reservation windows. 2.2 RedCap and RRC Reduced RRC complexity: RedCap devices may support fewer RRC states and optional functions (e.g., limited measurements). RAN2 specifies capability signaling and fewer RRC IEs; implementers must ensure that the gNodeB's RRC can handle capability-limited UEs without affecting normal UE processing. Energy-saving timers and RRC inactive: Tight integration with MAC and DRX to optimize power consumption; the scheduler supports longer DRX cycles and fewer grant allocations. 2.3 Location and Measurement Rel-17 introduces new measurement types and reporting formats to improve the application of PRS/CSI-RS in location. Implementation requires changes to UE measurement reports (RRC measurement objects and reports) and the LPP/NRPPa interface of the location server. ​

2025

12/05

5G System Architecture Supporting ATSSS

  I. ATSSS is an abbreviation for Access Traffic Steering, Switching, Splitting; this is a function introduced by 3GPP for 5G (NR) that allows mobile devices (UEs) to simultaneously use 3GPP and non-3GPP access, manage user data traffic, control new data flows, select (new) access networks, switch all ongoing data to different access networks to maintain data continuity, and split individual data flows, allocating them to multiple access networks to improve performance or achieve redundancy. Specifically:   Control:The network determines which access method (e.g., 5G and Wi-Fi) a new data flow should use based on operator-defined rules and real-time conditions. Switching:The network transfers an ongoing data session from one access network to another. For example, a video call can be switched from Wi-Fi to 5G without interruption. Splitting:The network can simultaneously allocate a single data flow to two or more access networks. This can be used to increase bandwidth (link aggregation) or ensure reliability (redundancy). II. Working Principle ATSSS can operate at the IP layer (using protocols such as MPTCP) or below the IP layer (using underlying routing functions). Control is handled by the 5G core network's PCF (Policy Control Function), based on operator-defined rules and performance measurement data from the User Equipment (UE) and the network itself.   III. ATSSS Modes The main ATSSS modes are as follows: Primary/Backup Mode:Traffic is sent through the active link. If the active link fails, it switches to the backup link. Load Balancing Mode:Traffic is distributed among available access networks, typically based on a percentage to balance the load. Minimum Latency Mode:Traffic is routed to the access network with the lowest latency (round-trip time). Priority Mode:Traffic is initially sent through a high-priority link. If that link becomes congested, traffic is split or diverted to a lower-priority link. IV. Architecture Expansion and Functionality The 5G system architecture has been expanded to support ATSSS functionality (see Figures 4.2.10-1, 4.2.10-2, and 4.2.10-3); the 5G terminal (UE) supports one or more flow control functions, namely MPTCP, MPQUIC, and ATSSS-LL. Each flow control function in the UE can perform flow control, handover, and splitting between 3GPP and non-3GPP access networks according to the ATSSS rules provided by the network. For Ethernet-type MA PDU sessions, the UE must have ATSSS-LL functionality, with the following specific requirements for the UPF: - The UPF can support MPTCP proxy functionality, which communicates with the MPTCP function in the UE using the MPTCP protocol (IETF RFC 8684 [81]). - UPF can support MPQUIC proxy functionality, which communicates with the MPQUIC function in the UE using the QUIC protocol (RFC9000 [166], RFC9001 [167], RFC9002 [168]) and its multipath extension (draft-ietf-quic-multipath [174]). - UPF can support ATSSS-LL functionality, which is similar to the ATSSS-LL functionality defined for the UE. IV. ATSSS Application Characteristics 4.1 Ethernet type MA PDU sessions require the ATSSS-LL functionality (conversion) in 5GC. In addition: - UPF supports Performance Measurement Function (PMF), which the UE can use to obtain access performance measurements on the 3GPP access user plane and/or non-3GPP access user plane. - AMF, SMF, and PCF extend new functionality, which is discussed further in Section 5.32. 4.2 ATSSS control may require interaction between the UE and the PCF (as specified in TS 23.503[45]).   4.3 The UPF shown in Figure 4.2.10-1 can be connected via the N9 reference point instead of the N3 reference point.   V. Roaming Scenarios 5.1 Figure 4.2.10-2 shows ATSSS support in a roaming scenario for the 5G system architecture; this scenario includes home-roaming traffic, and the UE is registered to the same VPLMN via 3GPP and non-3GPP access. In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are located in the H-UPF. 5.2 Figure 4.2.10-3 shows ATSSS support in a roaming scenario for the 5G system architecture, this scenario includes home-roaming traffic, and the UE is registered to the VPLMN via 3GPP access and to the HPLMN via non-3GPP access (i.e., the UE is registered to different PLMNs). In this case, the MPTCP proxy function, MPQUIC proxy function, ATSSS-LL function, and PMF are all located in H-UPF.

2025

12/04

What's different about 5G (NR) in Release 16 (2)?

  Besides defining SA (Standalone) as the standard 5G configuration, Release 16 5G enhances many features to support numerous improvements to the air interface, including unlicensed spectrum in the millimeter wave (mmW) band, and support for Industrial Internet of Things (IIoT) and Ultra-Reliable Low-Latency Communication (URLLC), making it more powerful. Specific additions are as follows:   I. Feature Enhancements As 5G network deployment progresses, the capacity requirements of the Radio Access Network (RAN) continue to grow, and the flexibility of network deployment is also increasing, including support for dedicated networks; RAN capacity and performance have become key to solving problems;   1.1 Capacity Enhancements include:   MIMO (Multiple-Input Multiple-Output) Improvements: Enhanced CSI II codebook to support MU-MIMO, multiple transmissions and receptions (multiple TRPs/panel transmissions), multi-beam operation in the millimeter wave band FR2, and low peak-to-average power ratio (PAPR) reference signals. Unlicensed Spectrum Applications: Similar to Licensed Assisted Access (LAA) and Enhanced LAA, 3GPP Release 16 supports unlicensed spectrum for NR access to improve the throughput and capacity of Wi-Fi in the 5-6 GHz band. 1.2 Performance Improvements:   RACS (Radio Access Capability Signaling) Optimization: Establishing RACS IDs and mapping them to device radio capabilities optimizes signaling for UE radio capabilities. Multiple UEs can share the same RACS ID, which is stored in the Next Generation Radio Access Network (NG-RAN) and Access and Mobility Management Function (AMF). Additionally, a new network function called UCMF (UE Capability Management Function) is introduced. TDD Applications: NR is primarily used in high-frequency time-division duplex bands: Due to electromagnetic wave reflection and refraction, the downlink of one cell can interfere with the uplink of another cell; this cross-link interference is inherent. NR Release 16 supports remote interference management to mitigate this cross-link interference. II. Flexible Network Deployment R16's IAB (Integrated Access and Backhaul) functionality can increase network capacity by rapidly deploying denser access points. Additionally: Non-Public Networks (NPNs): R16 supports two types of NPNs: Standalone NPN (SNPN) and Public Network Integrated NPN (PNI-NPN).  Flexible SMF and UPF Deployment: R16 introduces management flexibility for Session Management Functions (SMFs) and User Plane Functions (UPFs), allowing multiple SMFs to control a single UPF, and the UPF can assign IP addresses in place of the SMF. Enhanced Network Slicing Capabilities: R16 adds Network Slice-Specific Authentication and Authorization (NSSAA) to support individual authentication and authorization for services within a given network slice. Enhanced eSBA (Service-Based Architecture): R16 enhances service discovery and routing capabilities, including the introduction of a new Service Communication Broker (SCP) network function. R16 also enhances Network Automation Architecture (eNA). Release 15 supports data collection and network analytics public functionality. In Release 16, network analytics IDs can be used to assign specific analytics data, such as network usage per network slice, UE mobility information, and network performance, enabling the Network Data Analytics Function (NWDAF) to collect specific data associated with that analytics ID.

2025

12/03

What's different about 5G (NR) in Release 16 (1)?

  3GPP introduced LTE in Release 8 and LTE-Advanced in Release 10. As the first version of the 5G specification, Release 15 defined the 5G (NR) air interface and the 5G radio access network and core network. Release 16 (R16) introduced standalone (SA) and non-standalone (NSA) deployments, allowing operators to take advantage of the additional benefits of 5G.   I. Evolution from 4G to 5G In Release 16 (R16), 3GPP enhanced 5G capabilities to support several improvements to the NR air interface, including unlicensed spectrum in the millimeter-wave (mmW) band and improved support for Industrial Internet of Things (IIoT) and Ultra-Reliable Low-Latency Communication (URLLC). The network also underwent several enhancements to improve deployment flexibility and performance.   II. R16 Support for 5G Applications 5G was developed to meet the diverse application scenarios of wirelessly connected devices, covering enhanced mobile broadband (eMBB), massive Internet of Things (mIoT), and ultra-reliable low-latency communication (URLLC). Release R15 primarily focused on eMBB, with limited support for other application scenarios. Release R16 enhances URLLC and IoT capabilities and adds support for 5G vehicle-to-everything (V2X) communication.   III. Key 5G Application Scenarios include:   1. Ultra-reliable low-latency communication New enhancements provide low-latency communication to support industrial automation, connected cars, and telemedicine applications; specifically: The Time-Sensitive Networking (TSN) architecture supports redundant transmissions, thus supporting URLLC applications. Furthermore, the TSN service provides time synchronization for packet transmissions through integration with external networks. R16 enhances the uplink synchronization (RACH) process by supporting low latency and reducing signaling overhead, enabling two-step RACH compared to the previous four-step approach. New mobility enhancements reduce downtime and improve reliability during 5G connected device handover. 2. Internet of Things (IoT): 5G-supported Industrial Internet of Things (IIoT) capabilities can meet the service needs of industries such as manufacturing, logistics, oil and gas, transportation, energy, mining, and aviation.   Cellular Internet of Things (CIoT), now available in 5G, offers similar functionality to that provided in LTE (LTE-M and NB-IoT), allowing IoT traffic to be carried in network signaling. Energy-saving features such as enhanced discontinuous reception (DRX), relaxed radio resource management for idle devices, and enhanced scheduling can extend the battery life of IoT devices. 3. Vehicle-to-Everything (V2X): Release 16 goes beyond the V2X service capabilities supported by LTE in Release 14, leveraging 5G (NR) access to enhance V2X in several ways, such as enhanced autonomous driving, accelerated network effects, and energy-saving features.

2025

12/02

Adaptación de enlace (LA) en redes 5G (NR) (Continuación)

  En las redes inalámbricas 5G (NR), los equipos terminales móviles (UE) pueden emplear dos tipos de adaptación de enlace: adaptación de enlace de bucle interno y adaptación de enlace de bucle externo. Sus características son las siguientes: ILLA – Adaptación de enlace de bucle interno; OLLA – Adaptación de enlace de bucle externo. I. ILLA (Inner-loop Link Adaptive) realiza ajustes rápidos y directos basados en el Indicador de Calidad del Canal (CQI) reportado por cada UE. El UE mide la calidad de la enlace descendente (por ejemplo, usando CSI-RS). Reporta el CQI al gNB, que mapea el CQI (a través de una tabla de búsqueda estática) al índice MCS para la siguiente transmisión. Este mapeo refleja la estimación de la condición del enlace para ese intervalo de tiempo/TTI. ILLA aplica un proceso de tres pasos de la siguiente manera:   El UE mide el CSI-RS y reporta CQI=11. El gNB mapea CQI=11 a MCS=20. El MCS se utiliza para calcular el bloque de transporte para el siguiente intervalo de tiempo.   La ventaja de ILLA reside en su capacidad para adaptarse muy rápidamente a los cambios del canal; sin embargo, tiene limitaciones en términos de falsas detecciones, errores de CQI y ruido. Específicamente, el valor objetivo de BLER puede cambiar si el canal no es ideal o la retroalimentación es imperfecta.   II. OLLA (Outer Loop Link Adaptive) utiliza un mecanismo de retroalimentación para ajustar el valor objetivo de MCS para compensar el rendimiento real del enlace observado a través de las respuestas HARQ ACK/NACK. Para cada transmisión, el gNB recibe un ACK (éxito) o un NACK (fallo); donde: Si el BLER es más alto que el valor objetivo establecido (por ejemplo, 10%), OLLA se ajusta hacia abajo mediante un offset de corrección (Δoffset), es decir, reduciendo la agresividad del MCS. Si el BLER es más bajo que el valor objetivo, el offset se ajusta hacia arriba, es decir, aumentando la agresividad del MCS. El offset se agrega al mapeo SINR→CQI en ILLA, asegurando así que el BLER finalmente converja al valor objetivo, incluso si la señal de entrada no es ideal.   La ventaja de OLLA reside en su capacidad para mantener un BLER robusto y estable y adaptarse a errores del sistema que cambian lentamente en el informe SINR/CQI. Debido a su menor velocidad de respuesta, la configuración óptima del tamaño del paso (es decir, Δup y Δdown) requiere un equilibrio entre estabilidad y velocidad de respuesta. En el mecanismo OLLA, la retroalimentación se utiliza para ajustar el objetivo de MCS para compensar el rendimiento real del enlace observado a través de las respuestas HARQ ACK/NACK.   III. Comparación de la Adaptación de Enlace 4G y 5G La siguiente tabla compara la adaptación de enlace 4G y 5G.   Característica 5G NR 4G LTE CSI CQI + PMI + RI + CRI Principalmente CQI Velocidad de Adaptación Hasta 0.125 ms 1 ms Tipos de Tráfico eMBB, URLLC, mMTC Principalmente eMBB Mapeo MCS Optimizado por ML, impulsado por el proveedor Tabla fija Formación de haces MIMO masivo, selección de haz Mínimo Programador Totalmente integrado e inteligente CQI básico, PF                     En las redes 5G (NR), la Adaptación de Enlace (LA) juega un papel crucial para garantizar una conectividad de alto rendimiento y confiable. A diferencia del enfoque de tabla fija y más lento de 4G (LTE), los sistemas 5G emplean tecnologías más inteligentes y rápidas, incluyendo IA/ML y retroalimentación en tiempo real. Esto permite que la red se adapte a entornos cambiantes en tiempo real y utilice los recursos de radio de manera más eficiente.

2025

11/28

Link Adaptation (LA) in 5G (NR) Networks

  I. Link Adaptation In mobile communication networks, the wireless environments of any two end users (UEs) are never exactly the same. Some users may be right next to a 5G base station with excellent wireless signal, while others may be deep inside buildings, moving at high speeds, or at the edge of a cell. However, they all expect a fast and stable network experience. To achieve the highest possible throughput and optimal reliable connection, "Link Adaptation" technology was developed. Link adaptation can be viewed as an "automatic mode" of the 5G physical layer, continuously monitoring the wireless environment and adjusting transmission parameters in real time to provide the best data rate while controlling errors.   II. Link Adaptation (AMC) in 5G In 5G networks, link adaptation refers to the process of dynamically adjusting transmission parameters (such as modulation, coding, and transmit power) to optimize the communication link between the base station (gNodeB) and the user equipment (UE). The goal of link adaptation is to maximize spectral efficiency, throughput, and reliability while adapting to constantly changing channel conditions and user needs. Figure 1. 5G Link Adaptive Process   III. Characteristics of 5G Link Adaptive Process   Modulation and Coding Scheme (MCS) Selection:Link adaptive process involves selecting a suitable modulation and coding scheme based on channel conditions, signal-to-noise ratio (SNR), and interference levels. Higher modulation schemes offer higher data rates but are more demanding on channel conditions; lower modulation schemes are more robust under adverse conditions. Transmit Power Control: Link adaptive process also includes adjusting transmit power to optimize signal quality and coverage while minimizing interference and power consumption. Transmit power control helps maintain a balance between signal strength and interference levels, especially in dense network deployments. Channel Quality Feedback: Link adaptive process relies on feedback mechanisms to provide information about channel conditions, such as Channel State Information (CSI), Received Signal Strength Index (RSSI), and Signal-to-Interference-Ratio (SINR). This feedback enables the gNodeB to make informed decisions regarding modulation, coding, and power adjustments. Adaptive Modulation and Coding (AMC): AMC is a key feature of link adaptive process; it dynamically adjusts modulation and coding parameters based on real-time channel conditions. By adapting to changes in channel quality, AMC maximizes data rates and spectral efficiency while ensuring reliable communication. Fast Link Adaptation: In rapidly changing channel environments, such as high-mobility scenarios or fading channels, fast link adaptation technology is used to quickly adjust transmission parameters to cope with channel fluctuations. This helps maintain a stable and reliable communication link under changing channel conditions.   In wireless systems, link adaptation plays a crucial role in optimizing wireless communication system performance by continuously adjusting transmission parameters to match current channel conditions and user needs. By maximizing spectral efficiency and reliability, link adaptation helps achieve high data rates, low latency, and seamless connectivity in 5G networks.

2025

11/27

5G (NR) System Network Functions and Entities

  As 5G (NR) supports increasingly more connections and functions, the number of network functions and entities in the system is also constantly increasing. 3GPP defines network functions and entities in Release 18.5 as follows:   I. Network Function (NF) Units The 5G system includes the following functional units:  AUSF (Authentication Server Function); AMF (Access and Mobility Management Function); DN (Data Network), specifically including: operator services, internet access, or third-party services; UDSF (Unstructured Data Storage Function); NEF (Network Exposure Function); NRF (Network Repository Function); NSACF (Network Slice Admission Control Function); NSSAAF (Network Slice-Specific and SNPN Authentication and Authorization Function); NSSF (Network Slice Selection Function); PCF (Policy Control Function); SMF (Session Management Function); UDM (Unified Data Management); UDR (Unified Data Repository). - UPF (User Plane Functions). UCMF (UE Radio Capability Management Functions). AF (Application Functions). UE (User Equipment). RAN (Radio Access Network). 5G-EIR (5G Device Identity Registration). NWDAF (Network Data Analysis Functions). CHF (Charging Functions). TSN AF (Time-Sensitive Network Adapter). TSCTSF (Time-Sensitive Communications and Time Synchronization Functions). DCCF (Data Collection Coordination Functions). ADRF (Analysis Data Repository Functions). MFAF (Message Frame Adapter Functions). NSWOF (Non-Seamless WLAN Offload Functions). EASDF (Edge Application Server Discovery Functions). *Functions provided by DCCF or ADRF can also be carried by NWDAF.   II. Network Entities The 5G system, supporting connectivity with non-3GPP Wi-Fi, WLAN, and wired access networks, also includes the following entity units in its architecture: SCP (Service Communication Agent). SEPP (Secure Edge Protection Agent). N3IWF (Non-3GPP Interoperability Function). TNGF (Trusted Non-3GPP Gateway Function). W-AGF (Wired Access Gateway Function). TWIF (Trusted WLAN Interoperability Function).

2025

11/26

Anclaje de Sesión PDU (PSA) en Sistemas 5G

  En los sistemas 5G (NR), el PSA (Anclaje de Sesión PDU) es la UPF (Función de Plano de Usuario). Actúa como una puerta de enlace que se conecta a la DN (Red de Datos) externa a través de la interfaz N6 de la sesión PDU. Como punto de anclaje para las sesiones de datos de usuario, el PSA gestiona el flujo de datos y establece conexiones a servicios como Internet.   I. Hay tres modos PSA: Modo SSC 1, Modo SSC 2 y Modo SSC 3. Modo SSC 1: En este modo, la red 5G mantiene el servicio de conexión del UE. Para las sesiones PDU de clase IPv4, IPv6 o IPv4v6, la dirección IP está reservada. En este caso, la Función de Plano de Usuario (UPF) que actúa como anclaje de la sesión PDU permanece sin cambios hasta que el UE libera la sesión PDU. Modo SSC 2: En este modo, la red 5G puede liberar la conexión al UE, es decir, liberar la sesión PDU. Si la sesión PDU se utilizó para transmitir paquetes IP, la dirección IP asignada también se liberará. Un escenario de aplicación para este modo es cuando el UPF de anclaje requiere equilibrio de carga, lo que permite a la red liberar conexiones. En este caso, la sesión PDU se puede transferir a un UPF de anclaje diferente liberando la sesión PDU existente y, posteriormente, estableciendo una nueva. Utiliza un marco de "desconexión + establecimiento", lo que significa que la sesión PDU se libera del primer UPF de servicio y luego se establece una nueva sesión PDU en el nuevo UPF. Modo SSC 3: En este modo, la red 5G mantiene la conexión proporcionada al UE, pero pueden ocurrir algunos impactos durante ciertos procesos. Por ejemplo, si el UPF de anclaje cambia, la dirección IP asignada al UE se actualizará, pero el proceso de cambio asegura que la conexión se mantenga; es decir, se establece una conexión con el nuevo UPF de anclaje antes de liberar la conexión con el antiguo UPF de anclaje. La versión 15 de 3GPP solo admite el Modo 3 para sesiones PDU basadas en IP. II. Los principales usos del punto de anclaje de la sesión PDU incluyen: Punto de Terminación de Datos: El PSA es la UPF donde la sesión PDU termina su conexión con la red de datos externa. Enrutamiento de Datos: Enruta los paquetes de datos de usuario entre el equipo de usuario (UE) y la DN externa. Asignación de Dirección IP: El PSA está asociado con un grupo de direcciones IP. La dirección IP del UE se asigna de este grupo, ya sea por la propia UPF o a través de un servidor externo (por ejemplo, un servidor DHCP). La Función de Gestión de Sesión (SMF) gestiona este grupo de direcciones. Control de la Ruta de Datos: El SMF controla la ruta de datos de la sesión PDU, selecciona el PSA y gestiona la terminación de la interfaz N6.

2025

11/25

Clasificación y Estándares Técnicos de Repetidores 5G

  I. Características de los Repetidores En los sistemas de comunicación móvil, un repetidor (Repetidor Móvil), también conocido como amplificador de señal (repetidor) o amplificador de señal móvil, es un dispositivo que amplifica las señales de telefonía móvil existentes para mejorar la intensidad de la señal en áreas débiles. Su principio de funcionamiento implica el uso de una antena externa para recibir señales débiles, transmitiéndolas a un amplificador de señal para su amplificación, y luego retransmitiendo la señal mejorada a través de una antena interna. Esto mejora la conectividad del teléfono móvil dentro de su rango efectivo, haciéndolo particularmente adecuado para áreas rurales, grandes estructuras de hormigón y metal, o vehículos.   II. Estándares de los Repetidores Los amplificadores de señal utilizados en sistemas 5G (NR) se clasifican en: Repetidores; entre ellos, los NCRs (Repetidores de Control de Red), y equipos auxiliares; entre ellos, los NCRs se dividen además en NCR-Fwd y NCR-MT   . Los requisitos aplicables, procedimientos, condiciones de prueba, evaluación del rendimiento y estándares de rendimiento para diferentes tipos de estaciones base en redes inalámbricas son los siguientes:Los repetidores NR equipados con conectores de antena que pueden ser terminados durante las pruebas EMC cumplen con los requisitos de RF para repetidores tipo 1-C en TS 38.106[2] y demuestran el cumplimiento con TS 38.115-1[3].Los repetidores NR sin conectores de antena, es decir, los elementos de la antena no irradian durante las pruebas EMC, cumplen con los requisitos de RF para repetidores tipo 2-O en TS 38.106[2] y demuestran el cumplimiento con TS 38.115-2[4].Los NCR equipados con antenas o conectores TAB que pueden ser terminados durante las pruebas EMC cumplen con los requisitos de RF para NCR-Fwd/MT tipo 1-C y tipo 1-H en TS 38.106[2] y demuestran el cumplimiento con TS 38.115-1[3].El NCR no está equipado con un conector de antena, lo que significa que el elemento de la antena no irradió durante las pruebas EMC, lo que cumple con los requisitos de RF del tipo NCR-Fwd/MT 2-O en TS 38.106 [2] y demuestra su cumplimiento al ajustarse a TS38.115-2 [4].La clasificación del entorno de uso del repetidor se refiere a las clasificaciones de entorno residencial, comercial e industrial ligero utilizadas en IEC 61000-6-1 [6], IEC 61000-6-3 [7] e IEC 61000-6-8 [24]. Estos requisitos EMC se eligieron para garantizar que el equipo sea suficientemente compatible en entornos residenciales, comerciales e industriales ligeros

2025

11/24

1 2 3 4 5 6 7 8 9 10